If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 40x + -44 = 0 Reorder the terms: -44 + 40x + x2 = 0 Solving -44 + 40x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '44' to each side of the equation. -44 + 40x + 44 + x2 = 0 + 44 Reorder the terms: -44 + 44 + 40x + x2 = 0 + 44 Combine like terms: -44 + 44 = 0 0 + 40x + x2 = 0 + 44 40x + x2 = 0 + 44 Combine like terms: 0 + 44 = 44 40x + x2 = 44 The x term is 40x. Take half its coefficient (20). Square it (400) and add it to both sides. Add '400' to each side of the equation. 40x + 400 + x2 = 44 + 400 Reorder the terms: 400 + 40x + x2 = 44 + 400 Combine like terms: 44 + 400 = 444 400 + 40x + x2 = 444 Factor a perfect square on the left side: (x + 20)(x + 20) = 444 Calculate the square root of the right side: 21.071307506 Break this problem into two subproblems by setting (x + 20) equal to 21.071307506 and -21.071307506.Subproblem 1
x + 20 = 21.071307506 Simplifying x + 20 = 21.071307506 Reorder the terms: 20 + x = 21.071307506 Solving 20 + x = 21.071307506 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20' to each side of the equation. 20 + -20 + x = 21.071307506 + -20 Combine like terms: 20 + -20 = 0 0 + x = 21.071307506 + -20 x = 21.071307506 + -20 Combine like terms: 21.071307506 + -20 = 1.071307506 x = 1.071307506 Simplifying x = 1.071307506Subproblem 2
x + 20 = -21.071307506 Simplifying x + 20 = -21.071307506 Reorder the terms: 20 + x = -21.071307506 Solving 20 + x = -21.071307506 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20' to each side of the equation. 20 + -20 + x = -21.071307506 + -20 Combine like terms: 20 + -20 = 0 0 + x = -21.071307506 + -20 x = -21.071307506 + -20 Combine like terms: -21.071307506 + -20 = -41.071307506 x = -41.071307506 Simplifying x = -41.071307506Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.071307506, -41.071307506}
| 2/7x-4/3 | | 3tan^2-7tanx+4=0 | | 4x*x+3=6+2x | | ln(3+x)*ln(x+1)=0 | | 3.8/w=5 | | 4k=2k-10 | | w/3.8=5 | | 3k=-4+5k | | w/3.5=5 | | -3k=-2-k | | -5k-6=-2k | | X+19=-36 | | 7a(3a-9)= | | 12.99+0.08(x+3)=13.49-0.13x | | -16x^2+64x+144=0 | | 5-3n=46 | | .8w-.6w+.3w=4 | | 10x+14-5x=54 | | 13.94+0.13(x+3)=14.69+0.08x | | 2x-3(-2x+3)=7 | | x+y-z+5w=12 | | 3.4+x-1.3=6.8 | | -0.5x+8.87=-0.7x+4.87 | | 2/7x-4/3= | | 2x-3y-5z+w=-2 | | 7p-25=485 | | 3x-2x-5x=0 | | -5=5/9(f-32) | | 43.25+7=1.25t | | 6x+4y+3z+2w=19 | | 10(s-7)=-149 | | 10(9+0.4y)-4y=90 |